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Abstract. It was recently shown by Schulz and co-workers that in doped lanthanum gallate: La(1-x) 

SrxGa(1-y)MgyO(3-(x+y)/2) (LSGM) the three cations: La, Sr and Mg have tracer diffusivities that are 

nearly identical. To explain these findings, a bound defect cluster mechanism containing a cation 

vacancy from both the A- and the B- sublattices and an anion vacancy was proposed as the principal 

vehicle for cation diffusion in LSGM. In this paper, implications of this mechanism are considered 

for the first time. Sum-rule expressions for the collective correlation factors are derived and found 

to be in excellent agreement with Monte Carlo calculations. Expressions are also developed for the 

tracer correlation factors of lanthanum and gallium for diffusion via the cluster mechanism and 

tested by Monte Carlo computer simulation. Good agreement was found. The ratio of the tracer 

diffusivities of lanthanum and gallium are shown to be consistent with the cluster mechanism. 

Introduction 

Recently it was shown by Schulz et al. [1,2] that in doped lanthanum gallate: La(1-x)SrxGa(1-y)Mgy 

O(3-(x+y)/2) or LSGM, the three cations investigated: La, Sr and Mg all have tracer diffusion 

coefficients that are nearly identical
1
. Importantly, a similar behavior was also found for the 

impurities Y, Nd and Fe [3]. To explain these experimental findings a bound defect cluster 

mechanism containing cation vacancies of both the A- and the B- sublattice and anion vacancies 

was proposed as the principal vehicle for cation diffusion in LSGM [2]. Three different cluster 

mechanisms are possible in the lanthanum gallate structure. They consist of two cation vacancies 

(different sublattices) and one, two or three anion vacancies. In each mechanism the cations of a 

given type do not occupy the other cation sublattice. As was pointed out in [2] only a one anion 

vacancy cluster can produce long range diffusion (the others would require partial dissociation of 

the anion vacancies).  

On the other hand, the anion vacancies are many orders of magnitude more mobile than the 

cation vacancies in this structure. This makes it possible for the cluster mechanism to be very 

dynamic on the oxygen sublattice in the sense that oxygen vacancies only ‘visit’ clusters from time 

to time: they are not really permanently bound to the clusters. Once an oxygen vacancy is available 

in the required location for the cluster itself to be able to move, a few jumps can then occur on the 

cation sublattices. These jumps seemed to proceed only in a highly correlated way making the two 

cation vacancies tightly bound. These considerations lead to the necessity of analyzing first the 

triple defect (two cation vacancies and one anion vacancy) cluster mechanism and then the cation 

vacancy-pair with a supporting role of the anion vacancies. With the addition of doping elements on 

both cation sublattices the total number of anion vacancies increases greatly. This makes the model 

                                                 
1
 It was not possible to measure the Ga tracer diffusion coefficient, owing to the natural abundances of the two stable 

gallium isotopes, 
69

Ga and 
71

Ga, being 60% and 40% respectively. The maximum enrichment of, say, 
71

Ga above this 

background level is therefore a factor of 2.5, which is insufficient for determining diffusion profiles. 
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of the cation vacancy-pair mechanism with support by the anion vacancies even more relevant to 

the case of diffusion in LSGM.  

The absence of any information about tracer (and collective) correlation effects associated with 

the cluster mechanism makes any conclusions about their role in diffusion almost impossible.  In 

the present paper we initiate an investigation of the implications of the cluster mechanism on such 

correlations in cation diffusion in un-doped lanthanum gallate. 

Theoretical Models for Un-doped Lanthanum Gallate 

I. Collective Diffusion. The cluster mechanism first proposed in [2] can be considered in the 

following way for the undoped oxide ABO3. First, we define possible vector-jumps of the A cation 

(lanthanum) vacancy in the given cluster as 1

Ar
r
 and 2

Ar
r
, of the B cation (gallium) vacancy as Br

r
, and 

the O vacancy as 1

Or
r
 and 2

Or
r
(see Fig. 1). From geometrical considerations we have that:  
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where a is the lattice parameter. We can now introduce phenomenological coefficients LAA, LBB and 

LOO and their correlated parts, the collective correlation factors fij
(j)
  for the diffusion of cations A 

and B and oxygen by way of the postulated cluster diffusion mechanism: 

)0()(

jj

j

ijij LfL = ,                                                                                                                                 (3) 

where the superscript (0) always indicates an uncorrelated part.  

                
Fig. 1 Schematic representation of the possible jumps of the vacancies in the cluster in the lanthanum gallate structure. 

Unfilled circles represent vacancies.  

 

The Einsteinian expression for the phenomenological coefficients is [4]: 
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where Ri is the collective displacement of species i in the volume V in time t and k and T are 

Boltzmann constant and temperature respectively. It is a natural requirement of the vacancy-cluster 

mechanism that the cation and anion vacancies have the same displacement after some long time t. 

Accordingly, the collective displacements of the cations and anions must therefore be equal, i.e. RA 

= RB = RO. We then have that:  

LAA = LBB = LOO = LAO = LBO = LAB.                                                                                                 (5) 

Using exactly the same approach as given by Moleko and Allnatt [5] see also Allnatt and Lidiard 

[6] and Eq. 1, we soon have the following Sum-rule relations relating the phenomenological 

coefficients: 
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where wO is the exchange frequency of a vacancy (of the vacancy-cluster) with an oxygen ion and 

wA and wB are the exchange frequencies of the cation vacancies (of the vacancy-cluster).  

The expressions for the uncorrelated parts Lii
(0)
 of the phenomenological coefficients can be 

found by inspection as: 

VkT

Ncwcrz
L iViiiii

ii
6

2
)0(
= ,                                                                                                                      (7) 

where the ‘jump’ coordination numbers are zO = 2, zA = 2, zB = 1, the oxygen ion composition cO = 1 

and the cation composition cA = 1, cB = 1 with one cluster and therefore cViNi = 1 where cVi is the 

vacancy composition as ‘seen’ by component i and Ni is the number of sites on the corresponding 

sublattice (i = A, B, O).  We then have the Sum-rule relations Eq. 6 in terms of the correlated parts 

(the collective correlation factors) of the phenomenological coefficients: 
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Using standard procedures [7,8] we performed Monte Carlo calculations of the collective 

correlation factors fAA, fBB and fAB
(A)
 and fAB

(B)
 as functions of the ratio of exchange frequencies 

wA/wO and wB/wO . The cell size for the calculations was 40 x 40 x 40, the number of jumps per 

atom was 10 and the number of observations was 2 500. We made use of the Einsteinian expression 

for the collective correlation factors: 
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where Ri is the total displacement of all the atoms of type i, ni = ziciwiNi – total number of jumps of 

atoms of the type i in time t. 
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It is seen that there is perfect 

agreement between the Monte Carlo 

computer simulation results 

(presented as symbols in Fig. 2) and 

the theoretical expressions (solid 

lines in the same figure).  

These relationships between the 

phenomenological coefficients will 

be extended elsewhere for the doped 

oxide with the hope of suggesting 

critical interdiffusion and/or 

demixing experiments to test the 

existence of the cluster mechanism. 

II. Tracer Diffusion. In this 

section, we develop expressions for 

the tracer correlation factors for 

cations and anions (fA, fB and fO) 

along similar lines to that described 

by Belova and Murch [9]. First, we note that the diagonal collective correlation factors are given as 

(Eq. 8): 

 fVA = 4fAA;   fVB = 4fBB;   fVO = 4fOO,                                                                                           (10) 

where fVA, fVB and fVO are the correlation factors of the vacancy-cluster ends. We accept the point, 

where wB = 2wA as the reference point for determining the geometric tracer correlation factors f0(A) 

and f0(B) and the corresponding quantities M0(A) = 2f0(A)/(1-f0(A)) and M0(B) = 2f0(B)/(1-f0(B)). From 

Monte Carlo simulations (see below) we have that 413.0)(0 =Af  and 212.0)(0 =Bf  with the value 

for 407.1)(0 =AM  and, similarly, 538.0)(0 =BM . Then, using Manning’s formalism [9] for the 

tracer correlation factors, we can write: 
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where Hi = fVi wi M0(i): 
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Eq. 12, together with the expressions Eq. 11, gives the final set of expressions for the tracer 

correlation factors fA and fB. 

In order to calculate by Monte Carlo simulation the tracer (or self) correlation factors we use 

similar Einsteinian expression as Eq. 9 but now in terms of the individual displacement rj of a tracer 

atom of type j and the corresponding average number of jumps of the atom mj in time t [7, 11]: 
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Fig. 2 Collective correlation factors as functions of the ratios of the 

exchange frequencies. Symbols – Monte Carlo simulation results, lines 

– analytical relations derived on the basis of the Sum-rule. 
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In Fig. 3 we present results of Monte Carlo simulations for tracer (self) correlation factors over 

the full range of the ratio wA/wB with specified wO. The agreement between computer simulation 

results and the theoretical approach is generally good. Differences can be attributed to the well-

known shortcomings of the Manning formalism in describing tracer diffusion [6]. The likely usual 

experimental condition is one where the oxygen ion exchange frequency with a vacancy at one end 

of the vacancy-cluster is very large compared with the cation frequencies with the vacancies at the 

other ends. It is seen that the tracer correlation factor for the cation then extrapolates to 0.654 the 

value for diffusion by isolated vacancies in the s.c. lattice. The corresponding tracer correlation 

factor for the oxygen ions then extrapolates to zero. This comes about because the very slow 

moving ends of the vacancy-cluster mean that most jumps of the fast moving vacancy at the oxygen 

ion end will effectively be reversed. This directly affects the tracer correlation factor of the oxygen 

ions that jump with such vacancies of the vacancy-cluster. Of course in real (doped) material the 

fraction of oxygen vacancies actually moving in this way is extremely small compared with the 

very high concentration of isolated oxygen ion vacancies and accordingly there would be no 

discernible effect on the overall oxygen ion diffusivity. 

            

In Fig. 4 we present results 

of calculations of the ratio of 

the tracer diffusion 

coefficients DA
*
/DB

*
 as 

functions of the ratios of the 

exchange frequencies. It is 

seen that the maximum of this 

ratio is slightly under fourteen 

(and this follows the behavior 

of the vacancy-pair 

mechanism in the B2 

structure), whereas the 

maximum of DB
*
/DA

*
 is likely 

to be well under ten. 

On the other hand, from 

analysis of Fig. 4 we can see 

that the limiting values for the 

ratio of the cation tracer 

diffusivities are developed at 

rather high ratios of the 

(cation) exchange frequencies when the oxygen vacancy moves faster than the other vacancies in 

the cluster. Preliminary results for the wO/wB=1000 case (not shown) also seem to sit about where 

the wO/wB=100 results sit, strongly suggesting that the latter curve is already about the limiting one.  

Let us consider restricted intervals of, say, [0.1, 1] on the left hand side and [1, 0.1] on the right 

hand side of the abscissa of Fig. 3. These restricted intervals are likely to encompass the ratios of 

exchange frequencies encountered in practice. We then have the limits of about 2 and 1/5 for the 

ratio of the cation diffusivities. This ‘window’ is consistent with experimentally obtained values for 

the ratio of the various cation diffusivities (circa unity) for the doped oxide [2, 3]. When the doped 

oxide is considered we should take into account that for the composition of 0.1 of the additional 

elements on each cation sublattice the resulting (or average) cation vacancy exchange frequency 

will be almost unaffected by the (possible) different mobility of the added element. This will mean 

that the general limits of the ratios of the tracer diffusivities even in the doped oxide can be 

expected to follow the behavior in the un-doped oxide considered here.  
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Fig. 3 Tracer correlation factors as functions of the ratios of the exchange 

frequencies of the vacancy ends in the cluster mechanism. Symbols: 

Monte Carlo simulation results; solid and dashed lines: Manning type of 

analytical approximation (Eqns. 10,11). 
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Summary 

In this paper, implications of a postulated cluster mechanism in LSGM mechanism are 

considered for the first time. Sum-rule expressions for the collective correlation factors are derived 

and found to be in excellent agreement with Monte Carlo calculations. Expressions are also 

developed for the tracer correlation factors of lanthanum and gallium for diffusion via the cluster 

mechanism and tested by Monte Carlo computer simulation. Good agreement was found. The ratio 

of the tracer diffusivities of lanthanum and gallium are shown to be consistent with the cluster 

mechanism. 

          
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Ratio of the cation tracer diffusivities as a function of the ratios of the exchange frequencies as calculated by 

Monte Carlo simulations.  
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